

ITER School 2015, Hefei China

CN MCF Program and CFETR Jiangang Li (j_li@ipp.ac.cn)

Present State of MCF in China

EAST Progress

CN-ITER Activities

Next Step-CFETR

Summary

Support system for fusion research in China

CN-MCF Near Term Plan (2020)

ITER construction

 ASIPP: Feeders (100%), Correction Coils (100%), TF Conductors (7%), PF Conductors (69%), Transfer Cask System(50%), HV Substation Materials (100%), AC-DC Converter (62%)

 SWIP: Blanket FW (10%) &Shield (40%), Gas Injection Valve Boxes+ GDC Conditioning System (88%), Magnetic Supports (100%),
 Diagnostics (3.3%) Enhance Domestic MCF

Upgrade EAST, HL-2M

ITER technology

TBM (solid, DCLL, water)

University program

CFETR design (Wan)

CFETR R&D

Education program(2000)

Can start construct CFETR power plant @ 2020

HL-2A in SWIP

11111111111111111111111111111111111111	• <i>R</i> :	1.65 m
	•a:	0.40 m
	•Bt:	1.2~2.8 T
	Configu	uration:
	Limiter	, LSN divertor
	• lp:	150 ~ <mark>480 kA</mark>
	• <i>ne:</i> 1.0	~ 6.0 x 10 ¹⁹ m ⁻³
	• Te:	1.5 ~ 5.0 keV
	• Ti:	0.5 ~ 1.5 keV
	L.	

Auxiliary heating: ECRH/ECCD: (3+4)MW (6/68 GHz/500 kW/1 s) modulation: 10~30 Hz; 10~100 % NBI(tangential): 4MW LHCD: 2 MW (2/2.45 GHz/500 kW/1 s) Fueling system (H₂/D₂): Gas puffing (LFS, HFS, divertor) Pellet injection (LFS, HFS) SMBI (LFS, HFS) LFS: f =1~80 Hz, pulse duration > 0.5 ms gas pressure < 3 MPa

Next Step: HL-2M (2016)

Major radius, R	1.78m
Minor radius, a	0.65 m
Aspect ratio	<2.8
Flux-swing (one side OH current)	7 Wb @ maximum I _{OH} .
Ір	2 MA (3MA)
Bt	2.2 T (3T)
δ	>0.5
к	2
Plasma pulse	3s, extendable (depending on the discharge needs)
Divertor configurations	Usually LSN but flexible. DN, USN and elongated limiter shapes are achievable.

University Program

- More than 10 universities are involved in 10-15 tasks (40-60M\$/per year) with 200 Staff 200 students in MCF project;
- 3 theoretical research centers (Hefei, Zhejiang, Beijing)
- School of NST in USTC has been created: 100 undergraduate/year 100-150 (MS+Ph.D)/year

KT-5 in USTC

SUNIST in Tsinghua Univ.

J-TEXT in Huazhong Univ.

CAS-MCF-Theory Center

Integrated Concept design team for CFETR

Innovation Center for Plasma physics and Fusion energy

Education Program

- ASIPP: EAST (220 students), ITER (70 students),Fusion Tec(150)
- School of Physics (USTC, 35)
- School of Nuclear Science (USTC-ASIPP, 40)
- CN-MCF center (10 top universities) 200
- **ITER operation (>100/year)**

>HT-7 training machine: 1/3 operators, 80% proposal assign to young person. **EAST 10young person (<45)** take task force leader. >20-30 (EAST)+ 30(ITER) PhD, post.Dr, young staff to foreign lab for further education. >Training courses and summary school (20-250) > Teaching in top universities.

Outline

Present state of MCF in China

EAST Progress

CN-ITER Activities

Next Step-CFETR

Summary

Mission of EAST

Play a key role for understanding advanced SS plasma physics. Provide valuable data bases for ITER &CFETR

Milestones of EAST

- 1996.8 first proposal to CN Gover.
- 1998.6: accepted by CN Gover.
- 1998.7-2000.9 Design, R&D
- 2000.10: Start construction
- 2006.9: 1st plasma
- 2007.3-2012.7 Experiments,
- 45600 shots
- 2012.9-2014.4 Upgrade
- 2014.5-2020.12 2nd Phase of exp

 $B_{T} = 3.5 T (4T)$

Ip = 1.0MA (1.5MA)

R =1.85m, a = 0.45m

K =1.6-2.0, Delta = 0.4-0.6

ICRF: 25-70MHZ, 6MW (12MW)

LHCD: 2.45GHz, 2MW (4MW)

4.6GHz, (6MW)

NBI: 40-90keV (8MW)

ECRH: 140GHz 4MW, 170GHz, 6MW

Diagnostics:30 (80)

Wall Conditioning: For H-mode

>Two Li droppers

 \geq

SMBI- better fueling method

➢Better ne FB control, → 25 -35% lower retention, lower recycling

LH driven H-mode

Along accumulation of Lithium in vessel, stationary H-mode has been achieved Ip~500kA, Bt~1.54T, n_H/n_{GW} ~70%

ICRF Driven H Mode

 $\label{eq:spectral_states} \begin{array}{l} Ip{=}400{\text{-}}500k\text{A}, Bt = 2\text{T}, \\ f_{RF} = 27\text{MHz}, \\ two antennae, P \sim 2.0\text{MW} \\ ELMy \ Frequency: \ 200{\text{-}}500\text{Hz}, \\ \Delta\text{Te} \ 500\text{eV} \ , \Delta\text{Ti} \ 500\text{eV} \end{array}$

Type-I ELM+ Type-III ELM

 $\begin{array}{l} n_{e}/n_{GW} < 0.5, \\ n_{e} \sim 3 \times 10^{19} / m^{3} \\ I_{p} \sim 0.4 \text{MA}, \ B_{t} \sim 1.85 \text{T}, \ \delta \sim 0.4 \\ P_{LH} \sim 1.6 \text{MW}, \ P_{RF} \sim 0.8 \text{MW}, \\ 0.8 \leq H_{98} < 1 \end{array}$

f_{Large ELM}~20-50Hz ∆W/W~5-10% depends on inter-ELM time

Low density Type-I H mode H_{IPB98(y,2)} ~ 1

ELM10 F~10-20Hz energy loss~10% Heat load on target > 10MW/m²

Newly 4.6GHz-LHCD System Facilitates much Better Performance → Long Pulse H-mode

the record 32 s H-mode in 2012 campaign.

- **□** High $\delta \sim 0.55$, $q_{95} \sim 6.5$, $n_e/n_G \sim 0.55$
- $\square Presence of an ECM \sim 30 kHz$
- Peak heat flux: < 3MW/m²

Long Pulse H-mode with LHCD+NBI

LHCD+NBI modulation

□P_{NBI}=1.2 MW

□P_{LHW,2.45G}=1.0MW

□P_{LHW, 4.6G}=1.2MW

 $\Box n_e/n_G \sim 0.7$

 $\Box V_{Loop} < 0.04V$

□T_d>20S, Small ELM

Controllable density

ELM Control (p, j)

- SMBI
- Impurity gas puffing
- LHCD
- Li pellet injector
- D2 Pellet
- LHCD+SMBI
- RMP Coils
- ECRH, ICRH

ELM control by SMBI

400kA/LSN/LHW-1.5MW/ICRF-1.1MW

ELM amplitude reduce by a factor of 3 ELM frequency increase by a factor of 6 Higher frequency of SMBI, smaller ELM

The SMBI increase the striated heat flux and decrease the heat flux at OSP region

ELM control by pellets

7 ELM control by Low Velocity Li Granule Injection

Li Granule Size:0.2,0.4,0.6,0.7mm Velocity:20-200m/s

ELM Pacing by LH modulation

RMP-like features by LHCD+ SMBI

Two strike points on the targets: reduce heat loads

Stationary H-mode up to 32s achieved

30s H-mode

411s steady-state discharge

PFC Strategy for ATSSO

DN

- <u>Initial phase</u> (2006-2007)
 - PFM ⇒ SS plates bolted directly to the support without active cooling
- <u>First phase</u> (2008-2012) PFM ⇒ SiC-coated doped C tiles
- bolted to Cu heat sink ~2MW/m²
 <u>Second phase</u> (2013-2016)
 - Full W, Actively-cooled ITER W/Cu divertor , 10MW/m^{2.}
- Last phase (2017---)
 - High Tw operation (>400C) by hot He Gas 15MW/m^{2.}
 - + Flow LSN Li divertor (2014-2018, a national team has been built, 6M\$)

Edge Simulation under H-mode With LLNL, ENEA, TS, ITER-IO

System introduction of flowing Li limiter of ASIPP and PPPL

Lithium slowly moving on the surface

Upgrade of EAST (>98,000)

EAST 2014 PFC

9

Distribution of the EAST Diagnostics

EAST

Future(2015-2020)

Outline

Present state of MCF in China

EAST Progress

CN-ITER Activities

Next Step-CFETR

Summary

TF finished -Early than schedule!

Wire testing:ASIPP

Central tube: Tai Steel,

Wire: NICNC,Oxford

Cabling: Basheng Ltd,

316LN Tube:

Integration:ASIPP

Coating:Shenghai Ltd

1000m jacketing line In ASIPP

Feeder: Starting construction

DC/AC: PS Test Facility

300 MVA HV Substation completed

110 kV, 80 MW substation

110 kV, 350 MW substation (6000m2)

R&D: PS Test Facility

Control System for data display and monitor

350kA,10min has been tested

CC: R&D Finished proto-type was finished

CC: Start Construction

There are three main manufacture procedures in CC workshop:

- 1. All equipments for Bending & Winding the CICC is on assembly;
- 2. VPI equipments used on insulation procedure are ready;
- 3. The Laser Beam Welding system for case enclosure is on factory test.

Outline

Present state of MCF in China EAST Progress CN-ITER Activities

Next Step-CFETR

Summary

Chinese Fusion Engineering Test Reactor

000

CFETR Mission & Objectives

Mission: Bridge gaps between ITER and DEMO, realization of fusion energy application in China

- A good complementarities with ITER
- Demonstration of full cycle of fusion energy with a minim $P_{\rm f} = 50 \sim 200 MW$
- Demonstration of full cycle of T self-sustained with TBR ≥ 1.2
- Long pulse or steady-state operation with duty cycle time $\geq 0.3 \sim 0.5$
- Relay on the existing ITER physical (k<1.8, q>3, H~1) and technical (higher BT, diagnostic, H&CD) bases
- Exploring options for DEMO blanket&divertor with a easy changeable core by RH
- Exploring the technical solution for licensing DEMO fusion plant
- With power plant potential by step by step approach.

Core Plasma Performance-Phase I

E(MJ)	141	159	178	196	206	183
P_Fus(MW)	155	193	234	276	298	226
Q	2.4	3.0	3.7	4.	4.6	3. 53
Ti0	13.2	14.8	16.6	18.4	19.3	20.8
nel	0.79	0.79	0.79	0.79	0.79	0.65
nGR	0.85	0.85	0.85	0.85	0.85	0.7
betaN	1.59	1.79	2.00	2.22	2.33	2.07
betaP	1.03	1.16	1.29	1.43	1.50	1.33
fbs	41.4	46.7	52.2	57.8	60.7	54
taoE98Y2	1.65	1.56	1.48	1.41	1.38	1.38
Pn/Awall	0.27	0.33	0.40	0.47	0.51	0.39
Res	9.72E-09	8.13E-09	6.89E-09	5.90E-09	5.49E-09	4.88E-09
Pthre	63.6	63.6	63.6	63.6	63.6	55.3
ICD(MA)	2.03	2.29	2.56	2.83	2.97	3.9
H98	1	1.1	1.2	1.3	1.35	1.35
T_burn(s)	1933	3075	5714	15693	margin ss	SS

Ip~8MA, Bt=5T, q95=5.2, Zeff~1.76, P~80*0.8MW, γ_{CD} = 0.15~0.22 (ITER target 0.4) start up needs 100V*s,break down 10V*S, 50V*s for burning

Operation parameters with high B_T Phase II

A: B=6T, Ip=11.5MA, betaN=3, q_{95} =5.5, Q=15, P_{fusion} =1.24GW, Pnet =340MW

CFETR Phase 2		Case A	Case C	Case D	field on axis	Во	6.03	7.33	8.14
Scenarios					field at conductor	Bc	11.42	13.87	15.41
aspect ratio	AR	3.2	3.2	3.2	Ion Temperature	Ti(0)	22.60	22.60	22.60
plasma minor radius	a	1.87	1.87	1.87	TeTemperature	Te(0)	22.60	22.60	22.60
plasma major radius	Ro	5.98	5.98	5.98	Electron Density	n(0)	1.55	2.29	2.82
plasma elongation	κ	2.00	2.00	2.00	Ratio to Greenwald	nbar/nGR	0.99	1.20	1.33
fusion power	Pf	1240.6	2699.3	4114.1	Zeff	Zeff	2.45	2.45	2.45
power dissipated	Pc	400.3	590.4	728.9	Stored Energy	W	550	812	1002
power to run plant	Pi	245.79	455.02	636.84	Total Aux. Power	Paux	81.9	146.7	201.2
gain for whole plant	Qplant	2.39	2.77	3.00	TauE	TauE	1.67	1.18	0.98
Pfusion/Paux	Qplasma	15.15	18.40	20.44	H over ELMY H	HITER98	1.50	1.22	1.09
net electric power	Pnetelec	341.01	806.01	1273.99	Power per unit R	P/R	26.73	55.23	82.15
Neutron at Blanket	Pn/Awall	1.80	3.92	5.97	Neutron wall load	Pn/Awall	1.35	2.94	4.49
normalized beta	BetaN	3.07	3.07	3.07	Total Heating Power	Pheat	330	687	1024
bootstrap fraction	fbs	0.74	0.74	0.74	Fusion/Elect_pow	Qelect	5.05	5.93	6.46
plasma current	lp	11.48	13.95	15.50	q95 Iter	q95_iter	5.45	5.45	5.45

B: B=7.3T, Ip=14MA, betaN=3, q_{95} =5.5, Q=18.4, P_{fusion} =2.7GW, Pnet =800MW

Key Components: Blanket

1/32 section mock up of the VV

One Section(1/6) of CFETR CS Model Coil

	Coil Parameters				
Nb ₃ Sn Coil	Design Parameters of CFETR CS Model Coil				
	Max. field	12 T			
	Max. field rate	1.5 T/s			
	Inner radius	750 mm			
	Coil structure	Hybrid magnet Inner: Nb ₃ Sn coil Outer: NbTi coil			
NbTi Coil	Conductor type	Nb ₃ Sn CICC NbTi CICC			
Nb ₃ Sn	Conductor	NbTi Conductor			
$ \begin{array}{c} $	49	$ \begin{array}{c} $			

6

51

CS3U CS2U

CS1U CS1L CS2L

CS3

Some Achievements of RH project

CFETR Present Activities

≻ H&CD:

- off-aix NBI (0.5 MeV) + ECRH(top, 170-230 GHz)
- LHCD (HF, 4.6, 8.2GHz) +ECRH(top, 230GHz)
- > High B_T (7.5-8 T)
- CS (2212 CICC, YBCO tape, Nb3Al)
- Hybrid TF (2212 CICC+Nb3Sb)
- ➢ Heat exhaust (Divertor)
- ➢ Advanced Blanket
- ≻ T-Plant
- DEMO Materials

High B_T – Hybrid (Nb₃Sn+2212) TF

wire: ϕ =1.0mm Cable: $3 \times 4 \times 6 \times 6$ =432 Porosity: 30% Cable size: 15mm×32mm Jacket thickness: 8mm conductor: 31mm×48mm Isolation thickness: 2mm Full size: 35mm×52mm

Nb₃Sn or Nb₃Al : Jce>1200A/mm² (Ic>942A) Conductor I =190 \times 432=82kA 245mm \times 624mm Turn: 7 \times 12 Bmax=8.2T Bi2212: Jce>380A/mm² (Ic>300A) Conductor I =190 \times 432=82kA 280mm \times 624mm Turn: 8 \times 12 Bmax=19.1

Maybe possible

Advanced Divertor concept validation

EAST: snowflake experiments Vs EFIT+TSC+B2, Radiation+detache CFETR: D1+D2 coils Snowflake, Super-x, Snowflake+X, XD

Selective Laser Melting of Pure Tungsten

balling mechanism: the competitive processes of spreading and solidification

Target: 4-5 years DEMO full W block

30MW/m²Tmax: 1700C

水流速 m/s	20MW/m ²	30MW/m ²
8	1130℃	1680°C
10	1070°C	1600°C
12	1040°C	1540°C

Heat, mass and momentum transfer in turbulence melt flow, homogenization

Surface texture

Sub-grain Cel

W-Cu dissimilar welding Inter-diffusion

CMIF: Compact Neutron Source

The Materi	ials Irradiation Facility in China(CMIF)		energy (MeV)	20	50
Target	t High Neutron Flux Low Neutron Yield Small Sample Size ~1MW granular Be/C Target		F l ux (D+Be) Y (n cm ⁻² mA ⁻¹ s ⁻¹) F l ux (D+Be) Y (n cm ⁻² mA ⁻¹ s ⁻¹)	3.6*10¹³ *5 mA 9.81*10¹⁴ *20mA	2*10¹⁴ *10 mA 2*10¹⁵ *30 mA
Beam	50~100MeV@(5~30)mA (CW)		``´´´		
Cost	Low				
	Superconductor LINPAC	ndu	HEBT + scanni	Branular Ta ng + Vacuum differ Fanular flow sample	rential Granular Iff system ar deposited

ASIPP-Huainan R&D Center

Looking for an exciting future

Strengthen international cooperation

France, CEA, CADERACHE UK, UKAEA, CULHAM EU, JET, EFDA Germany: IPP, Garching KFA, Julich Italy, Frascati: ENEA India, IPR Korea, NFRI, KAERI **Russia: Kurchchatov institute** Swiss: DRCP, PSI **ITER-IO, 6-DA**

Japan: NIFS, Toki JAEA, Naka JSPS, CUP

USA: GA, San Diego FRC, Texas PPPL, Princeton MIT, UCSD UCLA, LLNL ORNL, ITPA: 20 person/year and invite topic meeting in China

Build international task forces EAST is Fully open to fusion community as valuable test bench for advanced steady-state plasma for ITER

Fusion is very important for China

Summary

- Significant progress has been made since China joint ITER.
- EAST starts high performance long pulse physics experiments and stationary H-mode was obtained.
- Next 5 year will be a key step which could focus on several key issues with ITER urgent needs on experiments, such as ELM control, high heat load and advanced SS H-mode.
- CFETR will benefit from ITER and make joint efforts towards DEMO.
- Young talent is our future, we are looking forward for your contribution.